36 research outputs found

    Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network

    Get PDF
    In this paper, we address the challenge of low recognition rates in existing methods for radar signals from unmanned aerial vehicles (UAV) with low signal-to-noise ratios (SNRs). To overcome this challenge, we propose the utilization of the bispectral slice approach for accurate recognition of complex UAV radar signals. Our approach involves extracting the bispectral diagonal slice and the maximum bispectral amplitude horizontal slice from the bispectrum amplitude spectrum of the received UAV radar signal. These slices serve as the basis for subsequent identification by calculating characteristic parameters such as convexity, box dimension, and sparseness. To accomplish the recognition task, we employ a GA-BP neural network. The significant variations observed in the bispectral slices of different signals, along with their robustness against Gaussian noise, contribute to the high separability and stability of the extracted bispectral convexity, bispectral box dimension, and bispectral sparseness. Through simulations involving five radar signals, our proposed method demonstrates superior performance. Remarkably, even under challenging conditions with an SNR as low as −3 dB, the recognition accuracy for the five different radar signals exceeds 90%. Our research aims to enhance the understanding and application of modulation recognition techniques for UAV radar signals, particularly in scenarios with low SNRs

    Low-complexity three-dimensional AOA-cross geometric center localization methods via multi-UAV network

    Get PDF
    The angle of arrival (AOA) is widely used to locate a wireless signal emitter in unmanned aerial vehicle (UAV) localization. Compared with received signal strength (RSS) and time of arrival (TOA), AOA has higher accuracy and is not sensitive to the time synchronization of the distributed sensors. However, there are few works focusing on three-dimensional (3-D) scenarios. Furthermore, although the maximum likelihood estimator (MLE) has a relatively high performance, its computational complexity is ultra-high. Therefore, it is hard to employ it in practical applications. This paper proposed two center of inscribed sphere-based methods for 3-D AOA positioning via multiple UAVs. The first method could estimate the source position and angle measurement noise at the same time by seeking the center of an inscribed sphere, called the CIS. Firstly, every sensor measures two angles, the azimuth angle and the elevation angle. Based on that, two planes are constructed. Then, the estimated values of the source position and the angle noise are achieved by seeking the center and radius of the corresponding inscribed sphere. Deleting the estimation of the radius, the second algorithm, called MSD-LS, is born. It is not able to estimate angle noise but has lower computational complexity. Theoretical analysis and simulation results show that proposed methods could approach the Cramér–Rao lower bound (CRLB) and have lower complexity than the MLE

    DOA Estimation for Hybrid Massive MIMO Systems using Mixed-ADCs: Performance Loss and Energy Efficiency

    Get PDF
    Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multipleinput multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing lowresolution analog-to-digital converters (ADCs) and hybrid analog and digital (HAD) structure is two low-cost choice with acceptable performance loss. In this paper, the combination of the mixedADC architecture and HAD structure employed at receiver is proposed for direction of arrival (DOA) estimation, which will be applied to the beamforming tracking and alignment in 6G. By adopting the additive quantization noise model, the exact closedform expression of the Cramer-Rao lower bound (CRLB) for the HAD architecture with mixed-ADCs is derived. Moreover, the closed-form expression of the performance loss factor is derived as a benchmark. In addition, to take power consumption into account, energy efficiency is also investigated in our paper. The numerical results reveal that the HAD structure with mixedADCs can significantly reduce the power consumption and hardware cost. Furthermore, that architecture is able to achieve a better trade-off between the performance loss and the power consumption. Finally, adopting 2-4 bits of resolution may be a good choice in practical massive MIMO systems.Comment: 11 pages, 7 figure
    corecore